## Worksheet answers for 2021-10-11

If you would like clarification on any problems, feel free to ask me in person. (Do let me know if you catch any mistakes!)

## Answers to conceptual questions

Question 1. On each square, $f$ attains its maximum value at the bottom-right corner. So the sample points to take are $(1,0),(2,0),(1,1),(2,1),(1,2),(2,2)$.

## Question 2.

(a) This is impossible to integrate with respect to $x$, so we have to use $\mathrm{d} y \mathrm{~d} x$.
(b) Either method is fine, though $\mathrm{d} y \mathrm{~d} x$ would let you do it in a single integral.
(c) Either method is fine.
(d) It is practically impossible to solve $x=y-y^{3}$ for $y$ in terms of $x$, so the only choice is to use the integration order $\mathrm{d} x \mathrm{~d} y$.

Question 3. This integral is maximized if we take the region $R$ to be exactly the region on which the integrand is nonnegative (or positive; it doesn't matter):

$$
3-x^{2}+2 x-4 y^{2} \geq 0
$$

After completing the square, one can rewrite this as

$$
(x-1)^{2}+4 y^{2} \leq 4
$$

so we see it's a filled-in ellipse.

## Question 4.

(a) Applying the hinted change of variables gives

$$
\int_{-3}^{3} \arctan \left(x^{3}\right) \mathrm{d} x=\int_{3}^{-3}-\arctan \left(u^{3}\right)(-\mathrm{d} u)=-\int_{-3}^{3} \arctan \left(u^{3}\right) \mathrm{d} u
$$

so this means the original integral must be equal to 0 . Geometrically: $\arctan \left(x^{3}\right)$ is an odd function, so by integrating from -3 to 3 , the area beneath the $x$-axis exactly cancels the area above it by symmetry.
(b) Switching the order of integration gives

$$
\int_{-1}^{3} \int_{-\frac{1}{2} \sqrt{3-x^{2}+2 x}}^{\frac{1}{2} \sqrt{-x^{2}+2 x}} e^{x^{2}+y^{2}} \sin y \mathrm{~d} y \mathrm{~d} x=\int_{-1}^{3} 0 \mathrm{~d} x=0
$$

where the inner integral evaluates to zero by the same logic as in part (a).

## Answers to computations

Problem 1. The function to maximize/minimize is just $f(x, y, z)=z$. So our system of equations is

$$
\begin{aligned}
0 & =4 \lambda+2 x \mu \\
0 & =-3 \lambda+2 y \mu \\
1 & =8 \lambda-2 z \mu \\
4 x-3 y+8 z & =5 \\
z^{2} & =x^{2}+y^{2} .
\end{aligned}
$$

The first two equations give $(6 x+8 y) \mu=0$, so either $\mu=0$ or $3 x+4 y=0$. The former results in no solutions, as either of the first two equations implies $\lambda=0$, but then the third equation is not satisfied. Hence we are left with the second case, and the system of equations

$$
\begin{aligned}
3 x+4 y & =0 \\
4 x-3 y+8 z & =5 \\
z^{2} & =x^{2}+y^{2} .
\end{aligned}
$$

After some algebra, we find the solutions $(x, y, z)=(-4 / 3,1,5 / 3)$ and $(4 / 13,-3 / 13,5 / 13)$. The former is the highest point and the latter is the lowest point, because $5 / 3>5 / 13$.

